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ABSTRACT

Automatic understanding of document images is a hard problem. Here we consider a sub-problem, 

automatically extracting content from filled form images. Without pre-selected templates or 

sophisticated structural/semantic analysis, we propose a novel approach based on clustering the 

component-block-projection-vectors. By combining spectral clustering and minimal spanning tree 

clustering, we generate highly accurate clusters, from which the adaptive templates are constructed to 

extract the filled-in content. Our experiments show this approach is effective for a set of 1040 US IRS 

tax form images belonging to 208 types.

Keywords: Document analysis, Image classification, Form processing, Image understanding, 

clustering.

1. INTRODUCTION 

Document image processing and analysis are important techniques in office automation and 

digital library applications. One hard problem is how to automatically extract and annotate filled-in 

content of form images [1]. An intuitive approach is to analyze the structure of an input form image 

[16] using only local information such as lines [15], intersections [4], cells [14], etc. The difficulty of 

this approach is that the structural information could be inaccurate, due to the poor quality of form 

images (e.g. touching of filled-in content and original form-texts, deformation or information loss in 

image acquisition, etc.). In addition, the form structure could be very complicated, making it hard to 

"understand" the meaning of individual regions. Another semantic analysis approach is to extract and 

discriminate information of different types [7], based on techniques of image segmentation, 

graphics/text separation, language separation, text recognition, etc. This paradigm, however, often has 
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difficulty in distinguishing the filled-in and the original content of the form image, especially when 

they have touching parts.  

An alternative way to attack this problem is to use the Document-Image-Recognition  (DIR) 

methods. The goal of DIR is to automatically determine the types of input document images. Template 

matching methods such as interval-code-matching [5], CCITT G4 pass-code matching [6], 

component-block-list matching [9], component-block-projection matching [8], etc, have been 

proposed. If the type of an input form image can be classified accurately, the template-image (or pre-

stored content description) for this form can be used to differentiate the filled-in content from the 

original form text/graphics. In this case, the quality of pre-selected templates is a critical factor.  

Unfortunately, it is often difficult to select single good template for an archive of filled form 

images, due to the great variations of filled-in content. In some other situations, form-templates might 

not have been pre-selected, or it is not applicable to select them manually (e.g. due to the expensive 

manual classification of hundreds of form types).  

In this paper, we propose a new approach for automatic content extraction of filled form images 

of unknown types, without pre-selected templates. The approach is based on form image clustering 

instead of complicated structure or semantic analysis. The similarity between images is calculated 

based on their component-block-projection-vectors. We develop a high-performance spectral 

clustering scheme to split the form image samples into many coherent clusters. Then, an adaptive 

template for each cluster is generated using the corresponding filled form images in this cluster. We 

show the adaptive templates thus found well approximate the original non-filled (blank) form images. 

Therefore, by subtracting the constructed template from an input form image, we are able to extract 

the filled-in content of the form. This also facilitates further automatic annotation of the filled-in 

content via semantic analysis of template content.  

2. CBP REPRESENTATION OF FORM IMAGES 

It is known that the error is large when form images are directly matched, because the filled-in 

information has large impact on the similarity of two images. To overcome this problem, we have 

previously suggested using the component blocks [9][8], i.e., the boundaries of the content regions 

(texts or graphics) of a form image. Because two forms of the same type have similar input fields, they 

should look alike if the filled-in content is removed. In the extreme case, all (i.e. both the filled-in and 

the original) content in a form image can be excluded, leaving only the bounding boxes (i.e. 

component blocks) of the isolated content regions. This component-block-image is a binary image 

made up of rectangular boxes, where foreground pixels (i.e., box edges) take value 1 and background 

pixels take value 0. It can be written as an array 
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where w and h are the image width and height, respectively; bmn=1 if the pixel {m,n}is on the edge of a 

component block, otherwise bmn=0.

Usually, the component-block-images of the same type should have larger overlap than the 

component-block-images of different types. To match component-block images, a simple and robust 

scheme, i.e., the Component-Block-Projection (CBP) vectors, was suggested in [8]. A CBP vector is 

the concatenated directional (horizontal and vertical) projection vector of all component blocks in a 
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form image, as shown in Eq. (2). Hence, each form image is represented as a point in the space of CBP 

vectors. This feature provides means to canonical and efficient matching of form images.  
'
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3. CLUSTERING FORM IMAGES 

We compute the similarity scores of pairwise CBP vectors. Suppose there are N document-image 

samples, we obtain an N N similarity matrix, based on which we cluster the form images of unknown 

types.  

Three simple similarity scores, i.e. correlation coefficient, L1 similarity, and L2 similarity, are 

considered. The correlation coefficients are normalized to the range [0, 1]. The L1 similarity is defined 

as the exponent of the negative L1 distance, thus having range [0, 1]. The L2 similarity is defined in the 

same way.  

A simple clustering method using similarity matrix is based on Minimal Spanning Tree (MST). 

The idea is to construct a max-weight MST from the similarity matrix, then iteratively remove the 

most dissimilar tree-edges (edges with the smallest weight/similarity) until a preset number of clusters 

are generated (or some constraints on the found clusters are satisfied). One problem of MST-

clustering, however, is that the global information of the similarity matrix has not been well 

considered; consequently, usually many leafs are cut, resulting in bad clusters. 

The data (similarity matrix) can also be clustered using spectral clustering methods [10][13][3], 

which use the top eigenvectors of the similarity matrix as the indicators of different clusters. This 

approach is able to generate globally more coherent clusters, so that the data points in the same cluster 

are more similar than those belonging to different cluster. The spectral clustering method can be 

iteratively applied to generate hierarchical clusters. One potential problem of spectral clustering is that 

low-value similarities might be noisy. Hence, a threshold is usually needed to remove low-value 

entries and improve the clustering.  

We try to make use of the advantages of both MST and spectral clustering, and avoid their 

problems. We propose a simple method to apply spectral clustering to the MST induced from the 

similarity matrix, to generate globally meaningful clusters. In this way, the similarity matrix becomes 

extremely sparse, which enables the spectral clustering to handle very large number of samples (form 

images), in addition to the benefit of noise-reduction. Because the expected number of clusters (types 

of form images) is usually large (tens to hundreds), another concern is that using the very sparse 

similarity matrix can accelerate the clustering procedure. 

In our implementation, we treat each document-image sample as a graph node. The similarity of 

each pair of nodes is set to be the weight of the respective edge between these nodes. We use the 

Prim's algorithm [2] to construct MST from the fully connected graph. Since the number of undirected 

edges is |E| = (N
2

N)/2, the MST construction has the complexity O(|E|lnN) when we use the ordinary 

binary heap and can be reduced to O(|E|+NlnN) when we use Fibonacci heap [2]. The found MST is an 

undirected graph; the respective adjacency matrix, denoted as T, is symmetric.  

In our spectral clustering method, we add an N N identity matrix IN onto T and produce the 

following symmetric matrix M, indicating the self-similarity of every document-image is the strongest: 

N
ITM (3)

We assume the clustering results are faithful, i.e. the form images clustered together have the 

same true type. This assumption puts a great requirement on the quality of the clusters induced. 
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However, as we will see from the experimental results, the above MST based spectral clustering can 

generate satisfactory results. 

4. TEMPLATE-FORM CONSTRUCTION AND CONTENT EXTRACTION 

We construct a template image for each cluster of form images. Clearly, in a generative model, 

we can assume all form images of the same type have an unknown independent identical distribution 

(i.i.d.). Based on the weak law of large numbers, the sample mean value will converge to the true 

distributional expectation, i.e. the centroid of the unknown distribution, given a sufficient number of 

form images.  

We note that the centroid of the filled form images is not necessarily a good template for content 

extraction, because the filled-in information will also appear on this Centroid Form Image (CFI). To 

solve this problem, we produce the pairwise difference images of samples in a cluster. Because of the 

assumption of highly accurate clusters, the original (non-filled-in) information on the form images 

would be removed in the difference image (we use the absolute value of the difference). Therefore, by 

further assuming the difference images are i.i.d., we can use the mean difference images to 

approximate the Centroid Difference Image (CDI). The foreground regions of CDI correspond to the 

most probable regions of filled-in content.  

We use the detected non-filled form images as templates for the respective image clusters. The 

template image can be obtained by subtracting the CDI from CFI. It is possible that its quality is not 

very satisfactory (e.g. fuzzy edges, broken lines, etc). By considering some image aligning schemes, 

the quality of the template image can be improved.  

The filled-in content can be extracted by subtracting the template image (non-filled form) from 

each filled form image. However, any overlapping pixels of the two images will be removed. Thus, we 

use a simple pixel repair process based on the neighborhood information of every subtracted pixel: a 

pixel will not be subtracted from the form image if the majority of its m n neighboring pixels is not 

removed. In this stage, the image aligning is also employed to avoid fuzzy content boundary of the 

non-filled form images. 

For a complete form-image content-understanding system, it also needs to consider subsequent 

problems such as automatic annotation of filled-in content. Given the accurate template images 

constructed, this can be accomplished by using character-recognition engines and word-sequence-

aligning/matching methods.  

5. EXPERIMENTS 

We used a dataset from [8], USTAX208, contains 1040 filled tax form images of the USA 

Internal Revenue Service (IRS) (http://www.irs.gov/formspubs/index.html). These forms belong to 

208 different types (5 forms per type). Due to the great content variations on these forms, it is difficult 

to directly use a structural/semantic analysis to extract the filled-in content. Along with the CBP 

representation approach, each form image was normalized to 800 600 pixels, based on which the 

component blocks were extracted using the PageX package [7]. The area of each block was used to 

indicate the importance of the block. For each image, we only used the K largest blocks to generate the 

CBP vectors.
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5.1. Clustering Results 

Knowing that there are 208 ground truth clusters of the 1040 form images, we used the 

MinMaxCut scheme [3] of spectral clustering to generate 208 clusters for comparison. The F-measure 

[11] between the clustering results and the ground truth clusters was used to evaluate the quality of 

results. As shown in Eq.(4), F-measure can be written in the form of precision P (Appendix Eq.(A1)) 

and recall R (Appendix Eq.(A2)), and has the range [0, 1]. The larger the F-measure, the better the 

clustering results. Usually, F-measure has a value close to the accuracy.  

RP

RP
F 2 (4)

Table 1. The F-measure between clustering results and the ground truth. K is the number of component blocks 

used in generating the CBP vectors. For the spectral clustering columns, F( ) is the F-measure value obtained 

by thresholding at , which takes value 0 (i.e. no thresholding), (mean), + (std), and +2 . For the MST 

clustering columns, F( ) is the F-measure of results obtained through the common MST clustering (termination 

criterion to split a cluster: maximal-edge-weight minimal-edge-weight). F(MST-Spectral) is the F-measure 

of results obtained via combining spectral clustering and MST clustering. 

Spectral Clustering MST Clustering 
Similarity K 

F (0) F ( ) F( + ) F( +2 ) F(1.5) F(1.2) F(1.05)

F (MST- 

Spectral)

10 0.9074 0.9322 0.9505 0.9790 0.9829 0.9330 0.7947 1.0000 

20 0.9198 0.9375 0.9532 0.9951 0.9923 0.9642 0.8340 1.0000 

30 0.9068 0.9128 0.9514 0.9981 0.9956 0.9686 0.8392 1.0000 

40 0.9290 0.9180 0.9693 0.9990 0.9951 0.9717 0.8440 1.0000 

50 0.9313 0.9038 0.9664 0.9937 0.9956 0.9734 0.8446 1.0000 

Correlation  

coefficient

60 0.9313 0.8987 0.9660 0.9966 0.9961 0.9731 0.8464 1.0000 

10 0.7413 0.7070 0.7977 0.9443 0.7359 0.9811 0.8151 0.9930 

20 0.7500 0.6777 0.8126 0.9756 0.4801 0.9956 0.8866 0.9920 

30 0.7626 0.6973 0.7981 0.9691 0.4801 0.9956 0.9164 0.9858 

40 0.7966 0.7074 0.7997 0.9726 0.5666 0.9955 0.9075 0.9846 

50 0.7825 0.6894 0.8289 0.9697 0.6211 0.9961 0.9011 0.9893 

L1 similarity 

60 0.8099 0.7021 0.8060 0.9690 0.7060 0.9949 0.8913 0.9879 

10 0.7367 0.7140 0.8553 0.9214 0.6377 0.9070 0.7635 0.9852 

20 0.7452 0.7398 0.8168 0.9628 0.5079 0.9614 0.7978 0.9909 

30 0.7542 0.7632 0.8571 0.9651 0.5752 0.9699 0.8120 0.9854 

40 0.7614 0.7452 0.8443 0.9596 0.6280 0.9706 0.8133 0.9856 

50 0.7620 0.7363 0.8263 0.9635 0.6718 0.9720 0.8091 0.9860 

L2 similarity 

60 0.7521 0.7177 0.8337 0.9566 0.7006 0.9725 0.8110 0.9833 

F-measure between 208-random-clusters of the 1040 samples and  

the ground truth clusters: 0.2043 0.0014 (based on 10 trials) 

Table 1 compares all the clustering results. With the spectral clustering, for all similarity scores, 

by appropriately enlarging the threshold to remove small entries in the similarity matrix, the noise is 

reduced. Consequently, the F-measure is improved significantly. For example, for correlation 

coefficient, when no thresholding is used, the respective F-measure (i.e. F(0)) is around 0.90~0.93; 

when thresholding using ( +2 ), F-measure becomes larger than 0.99, indicating the clustering results 

have minor error. For both L1 and L2 similarities, the F-measure is also improved in the same way. 
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For MST-clustering, we constrained the in-cluster coherence using a factor  (the smallest 

similarity is no less than the largest similarity divided by ), so that within any obtained cluster there is 

no obvious outlier (i.e. very dissimilar document image). F-measures of the resultant clusters are 

shown in Table 1. It is clear that  has to be properly chosen. When  is too large (e.g. the case of 

F(1.5)), the obtained clusters could have poor coherence (e.g. low F-measures in L1 and L2 cases); 

when  is too small (e.g. the case of F(1.05)), an intrinsic cluster could be over split, leading to low F-

measures (e.g. all the three similarities). Despite the fact that a carefully selected  for a particular 

MST might yield good results (e.g. =1.5 for correlation coefficient similarity, and =1.2 in the L1

case), generally, most  values would not lead to promising clustering results.  

In Table 1, the best results were obtained by combining MST clustering and spectral clustering. 

Clearly, for all similarity scores, the improvement is significant: the F-measure is consistently larger 

than 0.98. For correlation coefficient, F-measure is always 1, implying that there is no clustering error.  

Table 1 also shows that the clustering results are not sensitive to the number of blocks used in 

generating CBP vectors. The 20 largest blocks appear to be sufficient to discriminate different form 

images. More blocks will not degrade the clustering. This observation is consistent to the classification 

results reported in [8] with the same data set.  

As a baseline comparison, we also calculated the F-measure between the 208 random clusters of 

the 1040 samples (5 per cluster) and the ground truth. The value is slightly larger than 0.2, which is in 

good accordance to our expectation. 

We also generated smaller numbers of clusters. They have larger sizes, and might help to build 

hierarchical groups of form images. These results are omitted because they are not directly related to 

content extraction. 

Table 1 also indicates choice of similarity scores: the correlation coefficient score gives the best 

overall F-measures, indicating the clusters found are most similar to the ground truth. The L1 similarity 

is better than L2 similarity, but not as good as correlation coefficient. 

5.2. Template Construction and Content Extraction 

Based on the accurate clusters, we constructed the adaptive template images using the method 

shown in section 4. An example is included in Fig. 1. The CFI is shown in (a), where both the filled-in 

and the original information appear. The CDI is shown in (b), where only the input information 

appears. By combining (a) and (b) results, we constructed the non-filled form image in (c), which is 

the adaptive template image. Despite this clean example to show the basic idea, in a typical case the 

template is a bit fuzzy, which needs some post-processing (e.g. region based thinning, etc) to improve 

the quality. Finally, the filled-in content of each form was extracted by first aligning the filled form 

image with the template image, and then subtracting the template from the filled image. The result is 

shown in Fig.1 (d). 
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(a) Centroid form image 

(b) Centroid difference image 

(c) Template constructed 

(d) The content extracted from a form image 

Fig. 1 An example of filled-in content extraction. 
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6. DISCUSSIONS AND CONCLUSION 

Clustering form images and building hierarchical groups is an intuitive idea in document image 

analysis. Nonetheless, this goal is difficult to achieve using traditional structural and semantic analysis 

methods. By analyzing the global layout information, highly discriminative features such as interval 

codes [5], pass-codes [6], and CBP vectors [8], can be obtained. Besides their usage in template 

matching (for comparison see [8]), they all have potentials in form image clustering. 

We improved the spectral clustering by combining MST clustering. Clustering the MST using 

correlation coefficients leads to the best results, which are comparable to the earlier classification 

results in [8]. For other similarity scores, the new clustering scheme also improves the performance 

dramatically. 

With the highly discriminative CBP features and the high-performance clustering scheme, the 

templates are no longer needed to be determined in advance. Alternatively, we adaptively constructed 

template images using the difference-form-images. This approach has been shown effective in 

extracting contents of a set of US tax form images.  
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APPENDIX: Precision, Recall, E-Measure, and F-Measure

Precision and recall are widely used terms in information retrieval [11]. Precision P defines 

proportion of retrieved materials that are relevant. Recall R defines the proportion of relevant materials 

that are retrieved. They have the following forms: 

|retrieved|

|relevantretrieved|
P , (A1)

|relevant|

|relevantretrieved|
R . (A2)

Precision and recall can be combined as one score, weighted by a factor u [11]: 

uRPu

PR

R

u

P

u
E

)1(
1

1

1
1 .

(A3)

The coefficient u has range [0,1], and can be equivalently written as )1(1
2

vu , where v is 

unbounded. Hence, the score in Eq.(A3), called E-measure, has the following form, 

RPv
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Accordingly, the F-measure is defined as Eq.(A5), which reduces to the Eq.(4) when precision 

and recall are equally weighted, i.e. v = 1 or u = 0.5. Larger F-measure values are better. 

RPv

PRv
EF

2

2
)1(

1 . (A5)
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